8 research outputs found

    Symmetry Protected Topological phases and Generalized Cohomology

    Get PDF
    We discuss the classification of SPT phases in condensed matter systems. We review Kitaev's argument that SPT phases are classified by a generalized cohomology theory, valued in the spectrum of gapped physical systems. We propose a concrete description of that spectrum and of the corresponding cohomology theory. We compare our proposal to pre-existing constructions in the literature.Comment: 27 pages, 10 figures. v2: citation updat

    Subterranean Acoustic Activity Patterns of Vitacea polistiformis (Lepidoptera: Sesiidae) in Relation to Abiotic and Biotic Factors

    No full text
    Grape root borer (GRB), Vitacea polistiformis, is a root-feeding pest of grapevines in the US southeast that causes underground damage well before vines show visible symptoms. A 269-d study was conducted at 31 sites in a Florida vineyard to record short bursts of insect movement and feeding vibrations in grapevine root systems and provide information that can improve timing and targeting of GRB management efforts. Characteristic spectral and temporal patterns in the subterranean vibrations facilitated discrimination of GRB from background noise and non-targeted arthropods. Infestation likelihood of GRB at each site was estimated from previous studies relating infestation to burst rate. In all, 39% of recordings indicated low infestation likelihood. Sites with medium or high infestation likelihood were confined to a small region of the vineyard where a vine with larval feeding damage was confirmed. The restricted area suggests that the biological control or chemical treatments could be reduced elsewhere. Acoustic activity was significantly greater in fall and winter than in spring, and greater in evening than afternoon; fall evenings seemed best for GRB acoustic surveys. The GRB seasonal and circadian acoustic variation reflected phenological variation in grape root growth and nutrients and was not significantly correlated with temperature

    Investigating male Aedes aegypti (Diptera: Culicidae) attraction to different oviposition containers using various configurations of the sound gravid Aedes trap

    No full text
    Aedes aegypti (Linnaeus), the primary vectors of the arboviruses dengue virus and Zika virus, continue to expand their global distributions. In efforts to better control such species, several mosquito control programs are investigating the efficacy of rearing and releasing millions of altered male Aedes throughout landscapes to reduce populations and disease transmission risk. Unfortunately, little is known about Ae. aegypti, especially male, dispersal behaviors within urban habitats. We deployed Sound-producing Gravid Aedes Traps (SGATs) in Cairns, northern Australia, to investigate male Ae. aegypti attraction to various oviposition container configurations. The traps were arranged to include: 1) water only, 2) organically infused water, 3) infused water and L3 larvae, 4) infused water and a human-scented lure, and lastly 5) no water or olfactory attractant (dry). Our data suggest that males were more attracted to SGATs representing active larval sites than potential larval sites, but were equally attracted to dry SGATs relative to those containing water and/or infusion. Additionally, we found that female Ae. aegypti were equally attracted to wet SGATs, with or without infusion, but not dry ones. These results suggest that male Ae. aegypti within northern Australia are more attracted to active larval sites and equally attracted to dry containers as wet or infused ones. Additionally, female Ae. aegypti are unlikely to enter dry containers. Such findings contribute to our understanding of potentially attractive features for local and released Ae. aegypti throughout the northern Australian urban landscape

    Male and female capture in biogents sentinel traps and Sound-GATs.

    No full text
    <p><b>(A)</b> Mean weekly catches (± S. E.) of male <i>Ae</i>. <i>aegypti</i> caught by BGS, GAT and sound-baited GAT (S-GAT) traps. <b>(B)</b> Mean weekly catches (± S. E.) of female <i>Aedes aegypti</i> caught by BGS, GAT and sound-baited GAT (S-GAT) traps. <b>(C)</b> Mean weekly (± S. E.) <i>Aedes aegypti</i> trap totals (males and females) in BGS, GAT and sound-baited GAT (S-GAT) traps. Labels indicate significant groupings (<i>P</i> < 0.05, Factorial ANOVA, <i>n</i> = 30).</p

    Diagram of sound lure.

    No full text
    <p><b>(A)</b> Detailed schematic of the Arduino-based sound lure (Pro Mini 3.3 V board). The lure is programmed to produce a pulse-width-modulated 484 Hz sinusoidal-approximating signal through pin 11, from which it would travel through a DC-blocking capacitor to a speaker. The device is powered via a battery pack (SBH331AS, Memory Protection Devices Inc, Farmingdale, NY), containing three AA batteries and an on/off switch. <b>(B)</b> Assembled sound lure with a United States quarter dollar (diameter 2.54 cm) on top of battery box for size comparison. The components are: (A) assembled Arduino board, (B) speaker, (C) wired TTL serial adapter to connect to FTDI USB to TTL serial adapter to enable programming of board (Note: this component can be removed after programming if desired) and (D) battery pack.</p

    Waterproof, low-cost, long-battery-life sound trap for surveillance of male Aedes aegypti for rear-and-release mosquito control programmes

    Get PDF
    Background: Sterile male rear-and-release programmes are of growing interest for controlling Aedes aegypti, including use an "incompatible insect technique" (IIT) to suppress transmission of dengue, Zika, and other viruses. Under IIT, males infected with Wolbachia are released into the suppression area to induce cytoplasmic incompatibility in uninfected populations. These and similar mosquito-release programmes require cost-effective field surveys of both sexes to optimize the locations, timing, and quantity of releases. Unfortunately, traps that sample male Ae. aegypti effectively are expensive and usually require mains power. Recently, an electronic lure was developed that attracts males using a 484 Hz sinusoidal tone mimicking the female wingbeat frequencies, broadcast in a 120 s on/off cycle. When deployed in commercially available gravid Aedes traps (GATs), the new combination, sound-GAT (SGAT), captures both males and females effectively. Given its success, there is interest in optimizing SGAT to reduce cost and power usage while maximizing catch rates. Methods: Options considered in this study included use of a smaller, lower-power microcontroller (Tiny) with either the original or a lower-cost speaker (lcS). A 30 s on/off cycle was tested in addition to the original 120 s cycle to minimize the potential that the longer cycle induced habituation. The original SGAT was compared against other traps incorporating the Tiny-based lures for mosquito capture in a large semi-field cage. The catch rates in waterproofed versions of this trap were then compared with catch rates in standard [BG-Sentinel 2 (BGS 2); Biogents AG, Regensburg, Germany] traps during an IIT field study in the Innisfail region of Queensland, Australia in 2017. Results: The system with a low-power microcontroller and low-cost speaker playing a 30 s tone (Tiny-lcS-30s) caught the highest proportion of males. The mean proportions of males caught in a semi-field cage were not significantly different among the original design and the four low-power, low-cost versions of the SGAT. During the IIT field study, the waterproofed version of the highest-rated, Tiny-lcS-30s SGAT captured male Ae. aegypti at similar rates as co-located BGS-2 traps. Conclusions: Power- and cost-optimized, waterproofed versions of male Ae. aegypti acoustic lures in GATs are now available for field use in areas with sterile male mosquito rear-and-release programmes
    corecore